• Database Training

    databaseInterSource offers live instructor-led courses on all important database programming technologies, including Crystal Reports, Microsoft Access, MySQL, Oracle, SQL, SQL Server, SSAS, SSIS, SSRS and Xcelsius.

    These live classes are offered both on client sites, at our Geneva training center, and via a Web interface.

  • About Database

    A database is a collection of data stored and maintained for one or more uses. Most modern databases are managed by a Database Management System (DBMS), a set of computer programs that controls the creation, maintenance, and the use of the database with computer as a platform or of an organization and its end users. It allows organizations to place control of organization-wide database development in the hands of database administrators (DBAs) and other specialists.

    The proper integration of databases can dramatically increase the functionality of all types of applications, whether or not Web-enabled.

    Read More
  • Course Details Database

    Classes are offered at client sites, at our Geneva training center, and via a live web conference. For detailed course outlines and scheduled classes, please see below.

    To book training, navigate to the course you need, then:

    • For scheduled online classes, register from the choices indicated.
    • If you need an alternative dates, time or location, or if you want a live classroom course, click on “request an offer for this course,” to complete the form.

    InterSource clients are active globally. Live web courses run during Eastern Standard Time (New York) business hours and are priced in US dollars.

    We also run live web conference classes during European business hours, which can be invoiced in local currencies. To discuss your requirements please contact us on +41 (22) 958 0114.

Cloudera Developer Training for Spark and Hadoop

Course duration

  • 4 days

Course Benefits

  • How the Apache Hadoop ecosystem fits in with the data processing lifecycle
  • How data is distributed, stored, and processed in a Hadoop cluster
  • How to write, configure, and deploy Apache Spark applications on a Hadoop cluster
  • How to use the Spark shell and Spark applications to explore, process, and analyze distributed data
  • How to query data using Spark SQL, DataFrames, and Datasets
  • How to use Spark Streaming to process a live data stream

Course Outline

  1. Introduction to Apache Hadoop and the Hadoop Ecosystem
    1. Apache Hadoop Overview
    2. Data Processing
    3. Introduction to the Hands-On Exercises
  2. Apache Hadoop File Storage
    1. Apache Hadoop Cluster Components
    2. HDFS Architecture
    3. Using HDFS
  3. Distributed Processing on an Apache Hadoop Cluster
    1. YARN Architecture
    2. Working With YARN
  4. Apache Spark Basics
    1. What is Apache Spark?
    2. Starting the Spark Shell
    3. Using the Spark Shell
    4. Getting Started with Datasets and DataFrames
    5. DataFrame Operations
  5. Working with DataFrames and Schemas
    1. Creating DataFrames from Data Sources
    2. Saving DataFrames to Data Sources
    3. DataFrame Schemas
    4. Eager and Lazy Execution
  6. Analyzing Data with DataFrame Queries
    1. Querying DataFrames Using Column Expressions
    2. Grouping and Aggregation Queries
    3. Joining DataFrames
  7. RDD Overview
    1. RDD Overview
    2. RDD Data Sources
    3. Creating and Saving RDDs
    4. RDD Operations
  8. Transforming Data with RDDs
    1. Writing and Passing Transformation Functions
    2. Transformation Execution
    3. Converting Between RDDs and DataFrames
  9. Aggregating Data with Pair RDDs
    1. Querying Tables in Spark Using SQL
    2. Querying Files and Views
    3. The Catalog API
    4. Comparing Spark SQL, Apache Impala, and Apache Hive-on-Spark
  10. Querying Tables and Views with SQL
    1. Querying Tables in Spark Using SQL
    2. Querying Files and Views
    3. The Catalog API
  11. Working with Datasets in Scala
    1. Datasets and DataFrames
    2. Creating Datasets
    3. Loading and Saving Datasets
    4. Dataset Operations
  12. Writing, Configuring, and Running Spark Applications
    1. Writing a Spark Application
    2. Building and Running an Application
    3. Application Deployment Mode
    4. The Spark Application Web UI
    5. Configuring Application Properties
  13. Spark Distributed Processing
    1. Review: Apache Spark on a Cluster
    2. RDD Partitions
    3. Example: Partitioning in Queries
    4. Stages and Tasks
    5. Job Execution Planning
    6. Example: Catalyst Execution Plan
    7. Example: RDD Execution Plan
  14. Distributed Data Persistence
    1. DataFrame and Dataset Persistence
    2. Persistence Storage Levels
    3. Viewing Persisted RDDs
  15. Common Patterns in Spark Data Processing
    1. Common Apache Spark Use Cases
    2. Iterative Algorithms in Apache Spark
    3. Machine Learning
    4. Example: k-means
  16. Introduction to Structured Streaming
    1. Apache Spark Streaming Overview
    2. Creating Streaming DataFrames
    3. Transforming DataFrames
    4. Executing Streaming Queries
  17. Structured Streaming with Apache Kafka
    1. Overview
    2. Receiving Kafka Messages
    3. Sending Kafka Messages
  18. Aggregating and Joining Streaming DataFrames
    1. Streaming Aggregation
    2. Joining Streaming DataFrames
  19. Conclusion
    1. Message Processing with Apache Kafka
    2. What Is Apache Kafka?
    3. Apache Kafka Overview
    4. Scaling Apache Kafka
    5. Apache Kafka Cluster Architecture
    6. Apache Kafka Command Line Tools

Class Materials

Each student will receive a comprehensive set of materials, including course notes and all the class examples.

Class Prerequisites

Experience in the following is required for this Hadoop class:

  • The ability to program in Scala or Python is required.
  • Basic familiarity with the Linux command line.

Experience in the following would be useful for this Hadoop class:

  • Basic knowledge of SQL.
Since its founding in 1995, InterSource has been providing high quality and highly customized training solutions to clients worldwide. With over 500 course titles constantly updated and numerous course customization and creation possibilities, we have the capability to meet your I.T. training needs.
Instructor-led courses are offered via a live Web connection, at client sites throughout Europe, and at our Geneva Training Center.