Course duration

1 day

Course Benefits

• Learn to gain a deeper knowledge and understanding of the Amazon Redshift Architecture and how to write it.

Course Outline

- 1. What is Columnar?
 - 1. What is Parallel Processing?
 - 2. The Basics of a Single Computer
 - 3. Data in Memory is Fast as Lightning
 - 4. Parallel Processing of Data
 - 5. A Table has Columns and Rows
 - 6. Each Parallel Process Organizes the Rows inside a Data Block
 - 7. Moving Data Blocks is Like Checking in Luggage
 - 8. Facts That Are Disturbing
 - 9. Why Columnar?
 - 10. Row Based Blocks vs. Columnar Based Blocks
 - 11. As Row-Based Tables Get Bigger, the Blocks Split
 - 12. Data Blocks Are Processed One at a Time Per Unit
 - 13. Columnar Tables Store Each Column in Separate Blocks
 - 14. Visualize the Data Rows vs. Columns
 - 15. Row Based Blocks Can Waste Memory Space and Resources
 - 16. The Architecture of Redshift
 - 17. Redshift has Linear Scalability
 - 18. Distribution Styles
 - 19. Distribution Key Where the Data is Unique
 - 20. Another Way to Create A Table
 - 21. Distribution Key Where the Data is Non-Unique
 - 22. Distribution Key is ALL
 - 23. Even Distribution Key
 - 24. Matching Distribution Keys for Co-Location of Joins
 - 25. Big Table / Small Table Joins
 - 26. Fact and Dimension Table Distribution Key Designs
 - 27. Improving Performance By Defining a Sort Key
 - 28. Sort Keys Help Group By, Order By and Window Functions
 - 29. Each Block Comes With Metadata
 - 30. How Data Might Look On A Slice

- 31. Creating Three Tables with Different Sort Key Strategies
- 32. A Table with a Distribution Key and a Single-Sortkey
- 33. A Normal Sort Key Example
- 34. Creating a Table with an Interleaved Sort Key
- 35. Interleaved Vs. a Normal Sort Key
- 36. The ANALYZE Command Collects Statistics
- 37. Redshift Automatically ANALYZES Some Create Statements
- 38. What is a Vacuum?
- 39. When is a Good Time to Vacuum?
- 40. The VACUUM Command Grooms a Table
- 41. Database Limits
- 42. Creating a Database
- 43. Creating a User
- 44. Dropping a User
- 45. Inserting into a Table
- 46. Renaming a Table or a Column
- 47. Adding and Dropping a Column to a Table
- 2. Best Practices for Table Design
 - 1. Converting Table Structures to Redshift
 - 2. Converting Table Structures to Redshift Finale
 - 3. Best Practices for Designing Tables
 - 4. Choose the Best Sort Key
 - 5. Each Block Comes with Metadata
 - 6. Creating a Sort Key
 - 7. Sort Keys Help Group By, Order By and Window Functions
 - 8. Choose a Great Distribution Key
 - 9. Distribution Key Where the Data is Unique
 - 10. Matching Distribution Keys for Co-Location of Joins
 - 11. Big Table / Small Table Joins
 - 12. Define Primary Key and Foreign Key Constraints
 - 13. Primary Key and Foreign Key Examples
 - 14. Use the Smallest Column Size When Creating Tables
 - 15. Use Date/Time Data Types for Date Columns
 - 16. Specify Redundant Predicates on the Sort Column
 - 17. Setting the Statement_Timeout to Abort Long Queries
- 3. System Tables
 - 1. Redshift Has System Tables that Log to Disk (Prefix STL)
 - 2. Redshift Has System Tables that are Virtual (STV Prefix)
 - 3. Redshift Has System Catalog Tables Visible to Users
 - 4. Amazon Redshift System Tables
 - 5. Trouble Shooting Catalog Table pg_table_def
 - 6. Seeing the System Tables in your Nexus Tree
 - 7. Catalog Table pg table def
 - 8. Checking Tables for Skew (Poor Distribution)
 - 9. Checking All Statements That Used the Analyze Command
 - 10. Checking Tables for Skew (Poor Distribution)
 - 11. Checking for Details About the Last Copy Operation

- 12. Checking When a Table Has Last Been Analyzed
- 13. Checking for Column Information on a Table
- 14. System tables for troubleshooting data loads
- 15. Determining Whether a Query is Writing to Disk
- 16. Showing Alert events
- 17. Showing the Last Queries Run on the System
- 18. Showing Queries that Last More than One Second
- 19. Listing Queries From Longest to Shortest for a Particular Day
- 20. Reporting Queries with High CPU Time
- 21. Reporting Queries of Nested Loops Returning Many Rows
- 22. Finding Queries Aborted Because of a Monitoring Rule
- 23. The Number of MB blocks used by each column in a Table
- 24. Checking if a Table is Distributed Over All Slices
- 25. List Schemas and Tables in a Database from the PG Catalog
- 26. A View to See the State of the system Queues for Workloads
- 27. SELECT From the WLM_QUEUE_STATE_VW View
- 28. WLM QUEUE STATE VW View Definitions
- 29. A View Showing the State of Current Queries and Queues
- 30. WLM QUERY STATE VW View Definitions

4. Compression

- 1. Compression Types
- 2. Byte Dictionary Compression
- 3. Delta Encoding
- 4. LZO Encoding
- 5. Mostly Encoding
- 6. Runlength encoding
- 7. Text255 and Text 32k Encodings
- 8. ANALYZE COMPRESSION
- 9. Copy

5. Temporary Tables

- 1. Create Table Syntax
- 2. Basic Temporary Table Examples
- 3. More Advanced Temporary Table Examples
- 4. Advanced Temporary Table Examples
- 5. Table Limits and CTAS
- 6. Performing a Deep Copy
- 7. Deep Copy Using the Original DDL
- 8. Deep Copy Using a CTAS
- 9. Deep Copy Using a Create Table LIKE
- 10. Deep Copy by Creating a Temp Table and Truncating Original
- 11. CREATING A Derived Table
- 12. The Three Components of a Derived Table
- 13. Naming the Derived Table
- 14. Aliasing the Column Names in The Derived Table
- 15. Visualize This Derived Table
- 16. Most Derived Tables are Used To Join To Other Tables
- 17. Multiple Ways to Alias the Columns in a Derived Table

- 18. Our Join Example with a Different Column Aliasing Style
- 19. Column Aliasing Can Default For Normal Columns
- 20. CREATING A Derived Table using the WITH Command
- 21. Our Join Example With The WITH Syntax
- 22. WITH Statement That Uses a SELECT *
- 23. A WITH Clause That Produces Two Tables
- 24. The Same Derived Query shown Three Different Ways
- 25. Clever Tricks on Aliasing Columns in a Derived Table
- 26. A Derived Table lives only for the lifetime of a single query
- 27. An Example of Two Derived Tables in a Single Query
- 28. Connecting To Redshift Via Nexus

6. Explain

- 1. Three Ways to Run an EXPLAIN
- 2. EXPLAIN Steps, Segments and Streams
- 3. EXPLAIN Terms For Scans and Joins
- 4. EXPLAIN Terms For Aggregation and Sorts
- 5. EXPLAIN Terms For Set Operators and Miscellaneous Terms
- 6. EXPLAIN Terms For Set Operators and Miscellaneous Terms
- 7. EXPLAIN Example and the Cost
- 8. EXPLAIN Example and the Rows
- 9. EXPLAIN Example and the Width
- 10. Simple EXPLAIN Example and the Costs
- 11. Look for These Keywords to Track Data Movement
- 12. EXPLAIN Join Example Using DS_BCAST_INNER
- 13. EXPLAIN Join Example Using DS_DIST_NONE
- 14. EXPLAIN Showing DS_DIST_NONE Visually
- 15. EXPLAIN With a Warning
- 16. EXPLAIN For Ordered Analytics Such as CSUM
- 17. EXPLAIN For Scalar Aggregate Functions
- 18. EXPLAIN For Hash Aggregate Functions
- 19. EXPLAIN Using Limit, Merge and Sort
- 20. EXPLAIN Using a WHERE Clause Filter
- 21. EXPLAIN Using the Keyword Distinct
- 22. EXPLAIN for Subqueries

7. User Defined Functions

- 1. Creating a User Defined Scalar Function
- 2. Function Syntax
- 3. Creating a Simple Function
- 4. Creating a Function That Shows the Sunday Date of the Week
- 5. Create a Flight_Table that Holds Longitude and Latitude
- 6. A Function Example for Measuring Distance in Miles
- 7. A Function Example for Measuring Distance
- 8. Create a Flight Table that Holds Longitude and Latitude
- 9. A Function Example for Comparing Two Numbers
- 10. A Function Example Using Multiple Tables
- 11. SQL that Utilizes Two User Defined Functions (UDFs)
- 12. Function Volatility

- 13. Amazon Redshift Vs. Python Data Types
- 14. Privileges
- 8. Workload Management
 - 1. Create the WLM_QUEUE_STATE_VW View
 - 2. SELECT From the WLM_QUEUE_STATE_VW View
 - 3. WLM_QUEUE_STATE_VW View Definitions
 - 4. Create the WLM_QUERY_STATE_VW View
 - 5. WLM_QUERY_STATE_VW View Definitions
 - 6. Open Up Two Sessions in your Nexus
 - 7. SELECT From our WLM_QUERY_STATE_VW View
 - 8. Run a Long-Running Query in Tab
 - 9. In Tab Run These Two Queries
 - 10. After Setup of Four Queues
 - 11. How to use the SET command to Place a Query in a Queue
 - 12. Checking which Queue the Query is Executing In?
 - 13. How to Reset the Query Group
 - 14. Creating and Altering a Group
 - 15. Admin User Can Still SET to a Different Queue if they Want
 - 16. Overriding the Concurrency Level

Class Materials

Each student will receive a comprehensive set of materials, including course notes and all the class examples.